

96@12 Mahatma Ghandhi Marg, Kanpur -208001 •Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

### **UG PHYSICS**

#### **COURSE OUTCOMES (COs)**

#### **CERTIFICATE IN BASIC PHYSICS & SEMICONDUCTOR DEVICES**

|      | SEMESTER - I  | Mathe | ematical Physics & Newtonian Mechanics                                                                 | CODE: B010101T           | THEORY            | CREDIT: 04 |  |  |
|------|---------------|-------|--------------------------------------------------------------------------------------------------------|--------------------------|-------------------|------------|--|--|
|      |               | CO 1  | Be able to tell scalars, vectors, pseudo-scalars, a                                                    | nd pseudo-vectors ap     | art.              |            |  |  |
|      |               | CO 2  | Be familiar with the physical meaning of gradien                                                       | t, divergence, and cur   | Ι.                |            |  |  |
|      |               | CO 3  | Recognize the distinctions & relationships among cylindrical, spherical, cartesian coordinate systems. |                          |                   |            |  |  |
|      |               | CO 4  | Be familiar with what 4-vectors, Kronecker delta                                                       | , and Epsilon (Levi-Civ  | ita) tensor mear  | ۱.         |  |  |
|      |               | CO 5  | Research the source of fictitious forces in spinnir                                                    | ng frames.               |                   |            |  |  |
|      |               | CO 6  | Research how classical systems react to outside                                                        | forces and how they c    | leform elasticall | у.         |  |  |
|      |               | CO 7  | Be familiar with the physics of planetary motion                                                       | and how the Global P     | ositioning Syste  | m (GPS).   |  |  |
|      |               | CO 8  | Understand the various aspects of wave propagation and Simple Harmonic Motion (SHM).                   |                          |                   |            |  |  |
|      |               | Mecha | anical Properties of Matter                                                                            | CODE: B010102P           | PRACTICAL         | CREDIT: 02 |  |  |
|      |               | CO 1  | Understand the concept of moment of inertia (N                                                         | 11) and learn to calcula | ate the MI of a f | lywheel.   |  |  |
|      |               | CO 2  | Learn the technique of measuring moment of inertia of an irregular body using an inertia table.        |                          |                   |            |  |  |
|      |               | CO 3  | Understand the principles behind Barton's apparatus and use it to determine the modulus of rigidity    |                          |                   |            |  |  |
| 'EAR |               | CO 4  | Learn to use different methods such as sphere, disc, and Maxwell's needle to determine the modulus     |                          |                   |            |  |  |
| ST)  |               | CO 5  | Learn the concept of Young's modulus and calculate it using the bending of a beam.                     |                          |                   |            |  |  |
| FIR  |               | CO 6  | Learn to use a bar pendulum and Kater's pendulum to determine the acceleration due to gravity.         |                          |                   |            |  |  |
|      |               | CO 7  | Use the Sonometer and Melde's Experiment to measure the frequency of AC mains.                         |                          |                   |            |  |  |
| 1    | SEMESTER – II | Therm | al Physics and Semiconductor Devices                                                                   | CODE: B010201T           | THEORY            | CREDIT: 04 |  |  |
|      |               | CO 1  | Be able to tell reversible processes apart from in                                                     | reversible ones.         |                   |            |  |  |
|      |               | CO 2  | Recognize the importance of thermodynamical p                                                          | otentials in terms of    | physics.          |            |  |  |
|      |               | CO 3  | Understand the kinetic model of gases in relation                                                      | n to different gas laws  | i.                |            |  |  |
|      |               | CO 4  | Research how basic radiation rules are put into p                                                      | practise and their limit | ations.           |            |  |  |
|      |               | CO 5  | AC bridges' usefulness to determine inductance, capacitance and reactance.                             |                          |                   |            |  |  |
|      |               | CO 6  | Identify the fundamental parts of electronics.                                                         |                          |                   |            |  |  |
|      |               | CO 7  | Create straightforward electronic circuits.                                                            |                          |                   |            |  |  |
|      |               | CO 8  | Recognize the uses for various electronic instrum                                                      | nents.                   |                   |            |  |  |
|      |               | Therm | al Properties of Matter & Electronic Circuits                                                          | CODE: B010202P           | PRACTICAL         | CREDIT: 02 |  |  |
|      |               | CO 1  | Understand the basic operating principles of PN                                                        | junction diodes and tl   | neir characterist | ics.       |  |  |
|      |               | CO 2  | Study the characteristics of Zener diodes and the                                                      | eir applications in volt | age regulation.   |            |  |  |



96@12 Mahatma Ghandhi Marg, Kanpur -208001

•Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

|  | CO 3 | Study the operating principles and characteristics of light-emitting diodes (LEDs) and their applications in lighting and display technology.                 |
|--|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | CO 4 | Understand the operating principles and characteristics of photodiodes and their applications in sensing and detection.                                       |
|  | CO 5 | Measure the value of Stefan's constant experimentally and understand its significance in the study of blackbody radiation.                                    |
|  | CO 6 | Develop skills in conducting experiments related to semiconductor devices and fundamental constants, including data collection, analysis, and interpretation. |

#### **COURSE OUTCOMES (COs)** DIPLOMA IN APPLIED PHYSICS WITH ELECTRONICS

|        | SEMESTER - III | Electro | omagnetic Theory & Modern Optics                                                         | CODE: B010301T            | THEORY             | CREDIT: 04       |  |  |
|--------|----------------|---------|------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------|--|--|
|        |                | CO 1    | A better comprehension of everyday electrical a                                          | nd magnetic phenome       | ena.               |                  |  |  |
|        |                | CO 2    | To solve straightforward electrical device-related                                       | l issues.                 |                    |                  |  |  |
|        |                | CO 3    | Have an understanding of the useful applications                                         | s of the ballistic galvar | nometer.           |                  |  |  |
|        |                | CO 4    | Research the underlying physics of light refraction                                      | n and reflection (elec    | tromagnetic wa     | ves).            |  |  |
|        |                | CO 5    | Research the operation and uses of Fabry-Perot                                           | and Michelson interfe     | rometers.          |                  |  |  |
|        |                | CO 6    | Be able to distinguish between Fraunhofer's and                                          | Fresnel's classes of d    | iffraction.        |                  |  |  |
|        |                | CO 7    | Understand how polarimeters are used.                                                    |                           |                    |                  |  |  |
|        |                | CO 8    | Research the properties and applications of laser                                        | ſS.                       |                    |                  |  |  |
|        |                | Demo    | nstrative Aspects of Electricity & Magnetism                                             | CODE: B010103P            | PRACTICAL          | CREDIT: 02       |  |  |
|        |                | CO 1    | Develop an understanding of the variation of the                                         | magnetic field along      | the axis of a circ | cular coil.      |  |  |
| R      |                | CO 2    | Learn how to calculate the impedance of an LCR                                           | circuit.                  |                    |                  |  |  |
| ΥEA    |                | CO 3    | Develop an understanding of resistance per unit                                          | length and low resista    | ance using Carey   | / Foster Bridge. |  |  |
|        |                | CO 4    | Develop the ability to measure the resistance of a galvanometer using a post office box. |                           |                    |                  |  |  |
| ECC    |                | CO 5    | Learn to convert a galvanometer into a voltmeter.                                        |                           |                    |                  |  |  |
| 0,     |                | CO 6    | Learn to convert a galvanometer into an ammete                                           | er.                       |                    |                  |  |  |
| Γ      | SEMESTER - IV  | Perspe  | ectives of Modern Physics & Basic Electronics                                            | CODE: B010401T            | THEORY             | CREDIT: 04       |  |  |
|        |                | CO 1    | Understand the differences between Newtonian organization of space and time.             | and relativistic mech     | anics' descriptio  | ns of the        |  |  |
|        |                | CO 2    | Recognize the physical meaning of Lorentz trans                                          | formation equation in     | nplications.       |                  |  |  |
|        |                | CO 3    | Understand the duality of waves and particles.                                           |                           |                    |                  |  |  |
|        |                | CO 4    | Get knowledge of the fundamental principles of                                           | quantum mechanics.        |                    |                  |  |  |
|        |                | CO 5    | Research the comparison of different biassing ap                                         | proaches.                 |                    |                  |  |  |
|        |                | CO 6    | Learn how amplifiers are categorized.                                                    |                           |                    |                  |  |  |
|        |                | CO 7    | Understand how oscillators and feedback are use                                          | ed.                       |                    |                  |  |  |
|        |                | CO 8    | Understand the theory behind how optical fibers function as well as how they are used.   |                           |                    |                  |  |  |
|        |                | Basic I | Electronics Instrumentation                                                              | CODE: B010102P            | PRACTICAL          | CREDIT: 02       |  |  |
| CO – U | G PHYS         | SICS    |                                                                                          |                           | DEPART             | MENT OF PHYSICS  |  |  |



96@12 Mahatma Ghandhi Marg, Kanpur -208001

•Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

| CO 1 | Investigate the characteristics of the transistor in the common base and Common emitter configuration.                                                                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 2 | Measure the frequency response of a single-stage RC-coupled amplifier, and determine its bandwidth, gain, and phase shift characteristics.                                                    |
| CO 3 | Measure the frequency response of a single-stage transformer-coupled amplifier, and determine its bandwidth, gain, and phase shift characteristics.                                           |
| CO 4 | Observe how negative feedback affects the frequency response of a single-stage RC-coupled amplifier, and compare its characteristics to the original amplifier.                               |
| CO 5 | Understand the functionality of a Hartley oscillator circuit, and measure its frequency of oscillation.                                                                                       |
| CO 6 | Measurement of Planck's Constant: Measure Planck's constant using the photoelectric effect, and validate the relationship between the stopping potential and the frequency of incident light. |

#### **COURSE OUTCOMES (COs)** DEGREE IN BACHELOR OF SCIENCE

|      |              | Classical & Statistical Mechanics |                                                                                  | CODE: B010501T                  | THEORY           | CREDIT: 04       |  |  |
|------|--------------|-----------------------------------|----------------------------------------------------------------------------------|---------------------------------|------------------|------------------|--|--|
|      |              | CO 1                              | Be familiar with the D'Alembert's principl                                       | e and generalized coordinate    | es ideas.        |                  |  |  |
|      |              | CO 2                              | Recognize the significance of cyclic coordinates and Lagrangian dynamics.        |                                 |                  |                  |  |  |
|      |              | CO 3                              | Recognize the distinction between Hamilt                                         | tonian and Lagrangian dynan     | nics.            |                  |  |  |
|      |              | CO 4                              | Research the core force's key characterist                                       | tics and how they apply to Ke   | pler's conundru  | m.               |  |  |
|      |              | CO 5                              | Understand how macro-state and microst                                           | tate differ from one another.   |                  |                  |  |  |
|      |              | CO 6                              | Understanding the idea of ensembles.                                             |                                 |                  |                  |  |  |
|      |              | CO 7                              | Recognize the laws of statistical distribution, including classical and quantum. |                                 |                  |                  |  |  |
|      |              | CO 8                              | Research the ways in which statistical dist                                      | tribution laws are used.        |                  |                  |  |  |
|      |              | Quant                             | um Mechanics & Spectroscopy                                                      | CODE: B010502T                  | THEORY           | CREDIT: 04       |  |  |
| AR   | <b>^</b> - 1 | CO 1                              | Recognize the role that operator formalis                                        | m plays in quantum physics.     |                  |                  |  |  |
| ΟYE  | TER          | CO 2                              | Research the expectation value and eigen                                         | n techniques.                   |                  |                  |  |  |
| HIRC | MES          | CO 3                              | Recognize the origins and use of the uncertainty concept.                        |                                 |                  |                  |  |  |
| F    | SEI          | CO 4                              | Learn how to solve 1D and 3D issues using                                        | g the Schrodinger equation.     |                  |                  |  |  |
|      |              | CO 5                              | Recognize the Vector atomic model's acco                                         | omplishments in the theory o    | of Atomic Spectr | a.               |  |  |
|      |              | CO 6                              | Examine the many facets of the spectra o                                         | f Group I and Group II eleme    | nts.             |                  |  |  |
|      |              | CO 7                              | Research the creation and uses of X-rays.                                        |                                 |                  |                  |  |  |
|      |              | CO 8                              | Gain knowledge of molecular spectra's fu                                         | ndamental components.           |                  |                  |  |  |
|      |              | Demo                              | nstrative Aspects of Optics & Lasers                                             | CODE: B010503P                  | PRACTICAL        | CREDIT: 02       |  |  |
|      |              | CO 1                              | Understand Newton's Rings experiment a                                           | and use it to measure the way   | velength of sodi | um light.        |  |  |
|      |              | CO 2                              | Learn about the resolving power of a tele                                        | scope and measure it experi     | mentally.        |                  |  |  |
|      |              | CO 3                              | Understand the principles of plane diffrac                                       | ction grating and use it to obt | ain spectrum of  | mercury light.   |  |  |
|      |              | CO 4                              | Understand the working principles of a p sugar solution.                         | oolarimeter and use it to me    | asure the specif | ic rotation of a |  |  |
|      |              |                                   | <u> </u>                                                                         |                                 |                  |                  |  |  |



96@12 Mahatma Ghandhi Marg, Kanpur -208001

•Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

|          | CO 5                          | Understand the principles of a plane diffraction grating and use it to determine the wavelength of                                    |                                                       |                   |               |  |  |
|----------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|---------------|--|--|
|          |                               | laser light.                                                                                                                          |                                                       |                   |               |  |  |
|          | CO 6                          | Determine the focal length of the combination of lenses separated by a distance using a nodal slide and verify the formula.           |                                                       |                   |               |  |  |
|          | Solid State & Nuclear Physics |                                                                                                                                       | CODE: B010601T                                        | THEORY            | CREDIT:04     |  |  |
|          | CO 1                          | Develop an understanding of the relation                                                                                              | ship between crystal geome                            | try and symmetr   | y operations. |  |  |
|          | CO 2                          | Gain an understanding of the concept of reciprocal lattice and the significance of X-ray diffraction.                                 |                                                       |                   |               |  |  |
|          | CO 3                          | Explore various crystal binding properties and their implications.                                                                    |                                                       |                   |               |  |  |
|          | CO 4                          | Recognize the significance of Free Electron and Band theories in explaining crystal properties.                                       |                                                       |                   |               |  |  |
|          | CO 5                          | Analyze the characteristics of nuclear forces and radioactive decay processes.                                                        |                                                       |                   |               |  |  |
|          | CO 6                          | <ul> <li>Develop an understanding of the significance of nuclear models and reactions in explaining nuclear phenomena.</li> </ul>     |                                                       |                   |               |  |  |
|          | CO 7                          | Evaluate the applications and mechanisms of nuclear accelerators and detectors.                                                       |                                                       |                   |               |  |  |
|          | CO 8                          | Develop an understanding of the properties and classification of the fundamental building blocks of nature.                           |                                                       |                   |               |  |  |
|          | Analo                         | g & Digital Principles & Applications                                                                                                 | CODE: B010602T                                        | THEORY            | CREDIT:04     |  |  |
|          | CO 1                          | Analyze the behavior of charge carriers in                                                                                            | a semiconductor with respe                            | ct to drift and d | iffusion.     |  |  |
| 5        | CO 2                          | Develop an understanding of the Two-Po                                                                                                | rt model of transistors.                              |                   |               |  |  |
| <u>-</u> | CO 3                          | Explore the properties, functions, and applications of FETs.                                                                          |                                                       |                   |               |  |  |
| STE      | CO 4                          | Evaluate the design and operational principles of SCRs and UJTs.                                                                      |                                                       |                   |               |  |  |
| Ĭ        | CO 5                          | Examine various number systems and binary codes.                                                                                      |                                                       |                   |               |  |  |
| S        | CO 6                          | Develop proficiency in binary arithmetic.                                                                                             |                                                       |                   |               |  |  |
|          | CO 7                          | Explore the properties and mechanisms of various logic gates.                                                                         |                                                       |                   |               |  |  |
|          | CO 8                          | Evaluate the design of combinational and                                                                                              | sequential circuits.                                  |                   |               |  |  |
| Analo    |                               | g & Digital Circuits                                                                                                                  | CODE: B010603P                                        | PRACTICAL         | CREDIT:02     |  |  |
|          | CO 1                          | Develop an understanding of the energy l<br>current method and its implications in ele                                                | band gap of semiconductors<br>ectronic device design. | using the revers  | e saturation  |  |  |
|          | CO 2                          | <b>CO 2</b> Analyse the characteristics of tunnel diodes and their applications in electronic devices.                                |                                                       |                   |               |  |  |
|          | CO 3                          | Evaluate the hybrid parameters of transistors and their significance in electronic circuits.                                          |                                                       |                   |               |  |  |
|          | CO 4                          | Explore the properties and characteristics of FETs and MOSFETs and their applications in electronic devices.                          |                                                       |                   |               |  |  |
|          | ronic circuits.               |                                                                                                                                       |                                                       |                   |               |  |  |
|          | CO 6                          | Develop proficiency in using TTL ICs to design and verify the behaviour of logic gates and their applications in electronic circuits. |                                                       |                   |               |  |  |
|          | CO 7                          | Verification of the Logic Gates (AND, OR,                                                                                             | NAND, NOR, NOT, Ex-OR) ex                             | perimentally.     |               |  |  |