

96@12 Mahatma Ghandhi Marg, Kanpur -208001 •Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

PG PHYSICS

COURSE OUTCOMES (COS) DEGREE IN MASTERS OF SCIENCE – PREVIOUS YEAR

		TITLE		CODE	T/P/R	ТҮРЕ	CREDIT		
		Math	ematical Physics-I	B010701T	THEORY	CORE	04		
		CO1	Understand the fundamental concepts of o	complex analys	is, including co	ntinuity, differe	ntiability,		
			analytic functions, Cauchy-Riemann equations, and their applications.						
		CO2	Develop proficiency in solving linear dif	ferential equa	tions and spe	cial functions,	including		
		02	hypergeometric, Bessel, Legendre, Laguerre,	and Hermite eq	uations, and th	eir applications i	n physics.		
		CO3	Gain a working knowledge of linear vector sp	baces, including	inner products	s, norms, linear o	perators,		
			matrices, eigenvalues, and eigenvectors.						
		CO4	Understand the basic principles of probab			luding random	variables,		
			distributions, central limit theorem, hypothe						
		CO5	Develop an understanding of tensor analysis,	-	linate transforn	nations, contrava	riant and		
			covariant vectors, tensors, and their application				1		
		Classi	cal Mechanics	B010702T	THEORY	CORE	04		
		CO1	Analyze the mechanics of a system of particle	•		alized coordinate	es, virtual		
			displacement, principle of virtual work and D						
		CO2		d momenta to solve problems involving cyclic coordinates					
			and conservation laws						
AR		соз	Analyze central forces, two-body problem, o	orbits, and Kepl	er's laws using	calculus of varia	ation and		
FIRST YEAR	Ē		Hamilton's principle.		tion Deisson h				
ßT	SEMESTER - I	CO4	Be familiar with canonical transformations, g						
E			under canonical transformations, Invariance based on Hamilton's equations.	or symmetry an	a Noether's the	eorem and solve	problems		
			Analyze Hamilton-Jacobi equations, Hamilton	's charactoristic	function Inort	ia tonsor Eulor's	oquation		
		CO5	of motion, and torque-free motion of a rigid			ia tensor, Luier s	equation		
					ory of small os	-	g normal		
		CO6 Analyze the motion of a heavy symmetrical top and the theory of small oscillations includ modes.							
		Electr	omagnetic Theory	B010703T	THEORY	CORE	04		
			The course is designed for an understanding a				elaborate		
			the physical properties related to accelerate						
		CO1	of Maxwell's Equations, Displacement currer			•	-		
			momentum for an accelerated charge partic	•					
			electromagnetic wave.	·	, ,	C C			
			This unit explains the concepts of Vector and	scalar potential	s, gauge transfo	ormation, electro	magnetic		
		CO2	wave equation in terms of potentials with so						
			fields.				_		
			The conceptual and mathematical understa	anding of physi	cal properties	(wave equation,	velocity,		
		CO3	impedance, pointing vector etc.) of an electro	omagnetic wave	e in vacuum, no	n-conducting, co	nducting,		
		CUS	and plasma medium is developed in this section		•	•	eflection,		
			refraction, total internal reflection, polarizati	on, and dispers	ion of Electrom	agnetic Waves.			

96@12 Mahatma Ghandhi Marg, Kanpur -208001

	This section explains the waveguide and its types and properties (mode of propagation, cut off						
CO4	frequency, energy Flow, attenuation, cavity resonance etc.) related to propagation of electromagnetic						
	Waves in rectangular and cylindrical wavegui						
Quan	tum Mechanics-I	B010704T	THEORY	CORE	04		
CO1	Understand the mathematical foundation	s of linear al	gebra, includir	ng vector space	es, linear		
	independence, basis, and dimensionality.						
CO2	Learn the concepts of inner product, orthogonality, and completeness in the context of Hilbert spaces.						
CO3	Explore Hermitian and unitary operators, concepts of orthonormality, completeness, and closure us						
	Dirac's bra and ket notation.						
CO4	Develop skills in matrix representation and ch						
CO5	Understand the concepts of operators and		nd commutatio	n relations, inclu	uding the		
	uncertainty principle for two arbitrary operat						
CO6	Analyze the time evolution operator, station			er equation, incl	uding the		
	difference between the Schrodinger and Heis						
CO7	Evaluate the energy eigenvalues and eiger						
	quantum mechanics to classical mechanics us						
	Study the formalism of angular momentum,	0	•	•			
CO8	angular momentum, addition of angular mo	menta, Clebsch	-Gordan coeffi	cients, Pauli mat	rices and		
	spinors.						
Gene	ral Lab	B010705P	PRACTICAL	CORE	04		
CO1	Determine the thickness of a mica sheet using a biprism and understand the principles of interference						
	and diffraction.						
CO2	Calculate the resolving power of a prism and understand the relationship between the resolving						
	power, wavelength of light, and the angle of deviation.						
CO3	Analyze the properties of a Babinet compensator and understand how it can be used to measure the						
	retardation of a material and determine its refractive index.						
CO4	Demonstrate an understanding of the Michelson interferometer and its use in measuring the						
	wavelength of light, the refractive index of a material, and in the detection of gravitational waves. Evaluate the properties of a Fabry-Perot interferometer and understand its use in the measurement						
CO5	of the wavelength of light, the linewidth of la						
	Find the forbidden energy bandgap through						
CO6	resistivity of intrinsic semiconductor.	the inter-relat	ion between ch	ange in tempera	ature anu		
	Study of thermal and electrical conductiv	ity of motal a	nd find the la	prontz numbor	and also		
CO7		ity of metal a		Sientz number	allu also		
	determining the k/e using simple transistor.	auide and analy		hin hotwoon the	volocity		
CO8	Measure the velocity of ultrasonic waves in li frequency, and wavelength of the waves, as			•	-		
08		weil as the prop			which the		
	waves propagate.						

96@12 Mahatma Ghandhi Marg, Kanpur -208001

•Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

TITLE		CODE	T/P/R	ТҮРЕ	CREDIT					
Mathe	ematical Physics-II	B010801T	THEORY	CORE	04					
CO1	Apply various techniques for solving partial equation, and use them to model physical systems		•							
CO2	Analyze and solve inhomogeneous equation integral, and apply them to physical systems.									
CO3	Understand and apply group theory concernences on the second seco	e symmetries of	f physical syste	ems.	-					
CO4	 Analyze and solve equations using numerical methods such as finite difference, interpolation formulae, and iterative algorithms, and understand their accuracy and limitations. Use Laplace transform to solve differential equations with initial and boundary conditions, and apply 									
CO5	it to physical systems. Understand and apply Dirichlet and Neumann boundary conditions to solve Laplace's equation and									
CO6	Poisson's equation in various coordinate syste	ems.								
CO7	Analyze and solve wave equations, diffure mathematical techniques, and apply them to	physical system	S.							
CO8	Understand and apply the properties and appl Fourier transform and Laplace transform, and	apply them to	physical syster	ns.						
Solid S	State Physics	B010802T	THEORY	ELECTIVE	04					
CO1	The course is focused to explore the proper classification of materials, crystal structure an	d its types & pr	operties.	-						
CO2	This section gives an understanding of charac different techniques. It also provides the of Scattering factor and Geometrical structure fa	concepts of red actor.	ciprocal lattice	e, Brillouin zones	, atomic					
CO3	In this unit, an understanding about physical properties of metals (DC conductivity, magneto- resistance, thermal conductivity, thermoelectric effects, thermal properties of an electron gas) and their inter-relationship is done through Drude theory, Wiedemann-Franz law and free-electron model.									
CO4	This section explores the vibrational propert quantization of lattice vibrations and Einstein	ties of one- an	d three-dimen	sional lattices alo						
CO5	Formation of band structure based on nearly fr about Bloch theorem, Effective mass, Fermi su	urfaces, Cyclotro	on resonance i	s explored in this	unit.					
CO6	A brief study of semiconductor and its types & features (band structure, carrier statistics, conductivity, resistivity, mobility, drift, and diffusion currents etc.) is done in this section. It also gives a concept about Hall effect.									
CO7	This section explores the features of the superconductors, its types, properties, and phenomeno related to it (Meissner effect, Isotope Effect, London equations, formation of Cooper pair, BCS theory)									
Statist	ical Mechanics	B010803T	THEORY	CORE	04					
CO1	Understand the concept Phase space, microsta statistical mechanics, probability concepts; distribution, Specification of state of system, s a priory probability.	Random walk	problem in	one dimension-	binomial					
CO2	Be familiar with Micro-canonical, Canonical, and grand canonical ensembles, Partition function, Calculation of statistical quantities in terms of partition function. Entropy of mixing of gases (Ising									

FIRST YEAR

96@12 Mahatma Ghandhi Marg, Kanpur -208001

CO3	Understand the concept of Ideal quantum gas, Indistinguishability, Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics, Photon statistics, Ideal Bose gas, Bose-Einstein condensation, Ideal Fermi gas, Correlation function.						
CO4	Develop an understanding of Interacting spin in 1-dimension, mean-field solution in higher Critical exponents. Order parameter, Landau t	dimensions, P	-		-		
Electr	· · ·	B010804T	THEORY	ELECTIVE	0		
CO1	The course is design to learn about Ideal oper configurations, Biasing and offset currents, feedback in op-amp circuits, DC and AC charac	rational amplifi and offset vo	er, inverting an Itages, Feedba	nd non-inverting ack theory, and	•		
CO2	Demonstrate the applications of waveforn Frequency response, gain-bandwidth product	-			rs. Le		
CO3	Learn various applications which includes; current sources, wave shaping, integration, include; RC-phase shift, Wien bridge.	, and different	iation. Learn	Op-amp oscillato	ors ty		
CO4	Classify and comprehend the working princip multivibrators	le of various d	ata converters	, compare the wo	orkin		
CO5	The course is an introduction to the fundamentals of optoelectronics and principles of th optoelectronic devices' operation. Building on the basic understanding of how light interacts wit semiconductor materials and how electron-hole pairs generates and recombine in semiconductor.						
CO6	Discuss the principles of operation of opto transistors, Solar cell. Learn some of the crit distinction of device application.						
	Realize basic elements in optical fibers, different modes, and configurations. Learn the basic element of optical fiber transmission, fiber modes configurations and structures.						
CO7	Realize basic elements in optical fibers, differe		-	. Learn the basic e	eleme		
CO7 CO8	Realize basic elements in optical fibers, differe	figurations and nal distortion i	structures. n optical wave	e guides and oth			
CO8	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign	figurations and nal distortion i	structures. n optical wave	e guides and oth	ier sig		
CO8	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to	figurations and nal distortion i echniques to m B010805P	structures. n optical wave anufacture opt PRACTICAL	e guides and oth tical fibers.			
CO8 Gene	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab	figurations and nal distortion i echniques to m B010805P	structures. n optical wave anufacture opt PRACTICAL	e guides and oth tical fibers.	ier sig		
CO8 Gene CO1	Realize basic elements in optical fibers, different of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of	figurations and nal distortion i echniques to m B010805P	structures. n optical wave anufacture opt PRACTICAL	e guides and oth tical fibers.	ier sig		
CO8 Gene CO1 CO2 CO3 CO4	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different tr ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges.	figurations and nal distortion i echniques to m B010805P curves and dete	structures. n optical wave anufacture opt PRACTICAL	e guides and oth tical fibers.	ier sig		
CO8 Gene CO1 CO2 CO3 CO4 CO5	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter	figurations and nal distortion i echniques to m B010805P curves and dete	structures. n optical wave anufacture opt PRACTICAL ermine L, C.	e guides and oth tical fibers.	ier si		
CO8 Gene CO1 CO2 CO3 CO4 CO5 CO6	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sig degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using	figurations and nal distortion i echniques to m B010805P curves and dete	structures. n optical wave anufacture opt PRACTICAL ermine L, C.	e guides and oth tical fibers.	ier si		
CO8 Gene CO1 CO2 CO3 CO4 CO5 CO6 CO7	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using Analyze IV characteristics of a UJT.	figurations and nal distortion i echniques to m B010805P curves and dete	structures. n optical wave anufacture opt PRACTICAL ermine L, C.	e guides and oth tical fibers.	ier si		
CO8 Gene CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sig degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using Analyze IV characteristics of a UJT. Study a regulated power supply.	figurations and nal distortion i echniques to m B010805P curves and dete rs. g four probe me	structures. n optical wave anufacture opt PRACTICAL ermine L, C.	e guides and oth tical fibers. CORE	er sig		
CO8 Gener CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Resea	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using Analyze IV characteristics of a UJT. Study a regulated power supply. rch Project	figurations and nal distortion i echniques to m B010805P curves and dete rs. g four probe me B010806R	structures. n optical wave anufacture optical PRACTICAL ermine L, C. ethod. RESEARCH	e guides and oth tical fibers. CORE PROGRESSIVE	er sig		
CO8 Gene CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using Analyze IV characteristics of a UJT. Study a regulated power supply. rch Project Learn to identify, refine, and then determine to	figurations and nal distortion i echniques to m B010805P curves and dete rs. g four probe me B010806R the research pr	structures. n optical wave anufacture opt PRACTICAL ermine L, C. ethod. RESEARCH oblem of their	e guides and oth tical fibers. CORE PROGRESSIVE choice and ability	er sig		
CO8 Gener CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Resea	Realize basic elements in optical fibers, differe of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using Analyze IV characteristics of a UJT. Study a regulated power supply. rch Project	figurations and nal distortion i echniques to m B010805P curves and dete rs. g four probe me B010806R the research pr	structures. n optical wave anufacture opt PRACTICAL ermine L, C. ethod. RESEARCH oblem of their	e guides and oth tical fibers. CORE PROGRESSIVE choice and ability	er sig		
CO8 Gene CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 Resea CO1	Realize basic elements in optical fibers, different of optical fiber transmission, fiber modes conf Understand the different kind of losses, sign degradation factors. Also learn the different to ral Lab Plot LCR series and parallel circuit resonance of Study IV characteristics of SCR. Study Characteristics of MOSFET. Measure L and C using AC bridges. Study low pass, high pass, and band pass filter Determine bang gap of a semiconductor using Analyze IV characteristics of a UJT. Study a regulated power supply. rch Project Learn to identify, refine, and then determine to Understand the importance of conducting liter	figurations and nal distortion i echniques to m B010805P curves and dete rs. g four probe me B010806R the research pr erature review a objectives, hyp	structures. n optical wave anufacture opti- PRACTICAL ermine L, C. ethod. RESEARCH oblem of their and developing othesis brief ba	e guides and oth tical fibers. CORE PROGRESSIVE choice and ability a theoretical /co ackground of the	er sig		

96@12 Mahatma Ghandhi Marg, Kanpur -208001 •Telefax: (0512)2361924 • Website: www.ppncollege.org• •email:ppncollegekanpur@gmail.com•

PG PHYSICS

COURSE OUTCOMES (COs)

DEGREE IN MASTERS OF SCIENCE – FINAL YEAR

		TITLE		CODE	T/P/R	ТҮРЕ	CREDIT				
		Classic	al Electrodynamics and Plasma Physics	B010901T	THEORY	CORE	04				
		CO1	Concept of Lorentz groups, Pseudo-Euclide relativity, Matrix representation of Lorentz section.	• •	•	•					
		CO2	Tensor representation of equation of continuity, gauge transformation conditions, el fields, electromagnetic wave equation, and transformation of them under Lorentz tra								
		СОЗ	The solution of electromagnetic wave (Retarc point charge, Fields produced by a charge section. Along with it, the properties of rad accelerated charge (Radiated power, Larmor	in uniform and iation emitted s formula, Linn	accelerated m by non-relativi ard Formula ete	otion is explaine stically and relat c.) is also explaine	ed in this ivistically ed in it.				
		CO4	Understanding is developed about basic properties of plasma (formation condition, Plasma oscillation, Debye shielding, plasma confinement etc.), formulation MHD equations, properties of hydromagnetic waves (magnetosonic and Alfven waves) this section.								
ĸ	Ξ	Quant	um Mechanics-II	B010902T	THEORY	CORE	04				
YEA		CO1	Learn the principles and mathematical techniques used in stationary perturbation theory, WKB approximation methods, connection formula, and boundary conditions.								
SECOND YEAR	SEMESTER	CO2	Apply time-independent perturbation theory applications.		nonic oscillator a	nd other					
S	S	CO3	Knowledge of time-dependent perturbation	istant perturba	tion and its applic	cations.					
		CO4	Understanding of scattering cross-section, method of partial wave analysis, resonance, scattering from a square potential well and a rigid sphere.								
		CO5 Knowledge of the Born approximation									
		CO6	Ability to solve the Dirac equation for a free p current densities.	article, covaria	nt form of Dirac	equation, proba	bility and				
		Nuclea	ar Physics-I	B010903T	THEORY	CORE	04				
		CO1	Be familiar with the concepts of Mass and bi determination using X-rays and scattering of	nding energy, S		nass formula, nu	clear size				
		CO2	Develop an understanding of nuclear spin and magnetic moment of nuclei, Molecular beam resonance method, nuclear induction method, Electric quadrupole moment.								
		CO3	Understand the Alpha spectra, Selection rules, Geiger-Nuttall relation, Theory of alpha decay, Beta- spectra, Fermi's theory of beta decay, Sergeant's law, and Kurie Plot.								
		CO4	Knowledge of key concepts such as Allowe Transition, Extraction of Fermi constant, Parit	d and forbidde	en transitions,						
	1	CO5	Be familiar with multi-polarity of gamma probability, estimation of transition prob conversion, Angular correlation, nuclear isom	rays, Selection ability for sing	rules, Theoret gle particle (\	ical prediction T Veisskopf unit),	ransition				

96@12 Mahatma Ghandhi Marg, Kanpur -208001

CO6	Understand ideas of nuclear reactions, Conservation laws, The Q-equation and deduction of nuclear energy, Compound nucleus, Bohr hypothesis, Resonance phenomenon, Breit-Wigner single leve formula, Optical model, direct reactions. Nuclear fission, Bohr-Wheeler theory of nuclear fission Controlled chain reaction, nuclear reactors and Nuclear Fusion.					
Electr	onics-I B010904T THEORY ELECTIVE 04					
CO1	Understand the significance of EM wave propagation in the process of communication comprisin propagation of Ground Wave, Space Wave and Sky Wave. Be familiar with the important terms lik the line equation, characteristic impedance, reflection coefficient and standing wave ratio.					
CO2	Learn the basic concepts related to optical fiber communication and wireless communication.					
CO3 Learn basic antenna types and array techniques along with Systems and Characteriz matching. Explore the principle, operation and applications of Radar.						
CO4	Realize how noise affects communication and learn how it can be reduced. Being able to calculat Signal to Noise Ratio and comprehend basic principles of phase locking and lock-in amplifier. Stuc Sample and Hold Circuits.					
CO5	Understand the basic principles of Microprocessors in the light of 8085 microprocessor such a input/output interfacing devices, microprocessor-initiated operations, externally initiated operation instruction set and addressing modes.					
CO6	Gain a knowledge of 8085 programming and being able to write simple programs of addition, subtraction, multiplication and division of two numbers.					
CO7	Develop an understanding of basic principles and operation of microwave devices like Two Cavit Klystrons, Reflex Klystrons, Magnetrons, Helix Travelling Wave Tubes. Have a knowledge of Velocit Modulation and Wave Modes.					
CO8	Study propagation of microwaves, atmospheric effects on propagation, Fresnel Zone Problem an various components like antennas used in microwave communication systems. Analyze advantage and disadvantages of Microwave Communication.					
Practi	ical – Electronics-I B010906P PRACTICAL CORE 04					
CO1	Demonstrate knowledge of analog electrical devices, particularly operational amplifiers and the applications.					
CO2	Learn to design simple circuits containing operational amplifiers, used to perform mathematic operations, such as addition, subtraction, differentiation and integration, on applied signals.					
CO3	Design circuit which uses Op-Amp to compare two signals and also design the Schmitt circuit using Op- Amp.					
CO4	Study transistor Wein bridge oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value					
CO5	Study transistor phase shift oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value.					
CO6	Classify circuits, working principle, waveforms and application of Astable, Monostable and Bistab multivibrator (Using IC555).					
CO7	Classify transistorized circuits and applications in designing of Astable, Monostable and Bistab multivibrator (Using transistors).					
CO8	Building on the basic understanding of how light interacts with semi-conductor materials the comparing the characteristics of an LED and photodiode.					

96@12 Mahatma Ghandhi Marg, Kanpur -208001

	TITLE		CODE	T/P/R	ТҮРЕ	CREDIT				
	Atom	ic and Molecular Physics	B011001T	THEORY	CORE	04				
	CO1	Understanding of Hydrogen-spectra, alkali s based on Vector atom model (Spin-Orbit inter			and their fine s	tructures				
	CO2	 Detailed exploration of Coupling schemes, Normal and Anomalous Zeeman Effect, Pa effect, Stark effect, Hyperfine structure, Isotope effect in atomic spectra, distinction betwee effect, hyperfine structure and Lamb Shift. 								
	СОЗ	Brief explanation of Pure Rotational spectra, Vibrational spectra, Rotational- Vibrational spectra of diatomic linear and symmetric top molecules, Raman Spectra is done in this section.								
	CO4	Study of electronic Spectra of Diatomic mole- ruby laser, uses of lasers in Raman spectrosco Magnetic Resonance (N.M.R) and their applic	py, Principle of	Electron Spin F		-				
	Nucle	ar Physics II	B011002T	THEORY	CORE	04				
	CO1	Understand the Nuclear two-body problem, central feature of nuclear forces, Charge symn theory of nuclear forces, Partial wave analysis	netry and charge	-	•					
	CO2	Gain insights on Low energy n-p scattering, Lo system, Scattering length and effective range	theory.							
2	CO3	Appreciate and understand liquid drop model, Magic numbers and evidence of shell structure, Extreme single particle shell model, Predictions of spin, parity and electromagnetic moments, Nilsson Model (Qualitative), Collective model.								
SEMESTER - IV	CO4	Be familiar with Rotational and Vibrational Hamiltonian, Energy levels and band structure due to single particle; Vibrational and rotational behaviour of different nuclei.								
SEME	CO5	Classification of elementary particles Exact conservation laws, Approximate conservation laws: Isospin and Isospin wave functions for pion-nucleon system, strangeness, parity, time reversal and charge conjugation, CP violation.								
	CO6	Get a thorough understanding of Eight fold way, Quarks, Quark-Quark interaction, SU(3) quark model, Gellmann-Nishijima formula, Magnetic dipole moment of baryons, Masses of hadrons. Basic ideas about the standard model. Mass generation.								
	Electr	onics-II	B011003T	THEORY	ELECTIVE	04				
	CO1	Understand and analyze various analog cont including AM, FM and PM. Analyze various por								
	CO2	Understand various aspect of amplitude modulation in different domains. Learn block diagram of AM transmitter, suppression of carrier methods and to distinguish various analog modulation techniques. Discuss various types of SSB and explain their advantages								
	СО3	Evaluate modulation index, bandwidth, and power requirements for various analog modulation schemes. Understand and analyze various analog continuous wave modulation and demodulation techniques. Analyze various analog pulse modulation and demodulation techniques including AM, FM and PM.								
	CO4	Understand the basic principles, benefits, communication systems. Analyze various di including PAM, PWM, and PPM. Understand	igital pulse mo	dulation and o	demodulation te	chniques				
	CO5	Learn the progression of PCM, Differential Understand the concept of baseband transr communication systems.	PCM, Delta M	odulation, Ad	aptive Delta mo	dulation.				

96@12 Mahatma Ghandhi Marg, Kanpur -208001

CO6	Understand and remember the concept of amplitude shift keying modulation and demodulation. Analyze the frequency shift keying modulator, coherent and non-coherent frequency shift keying detectors. Provide detail on the various schemes used to transmit digital signals, including FSK, PSK, BPSK, QPSK, DPSK, MSK and QAM.				
Laser	Physics and Applications B011006T THEORY ELECTIVE 04				
CO1	Understand interactions of atoms and molecules with light, absorption and spontaneous and stimulated emission in two level system, the effects of homogeneous and inhomogeneous line broadening, and the conditions for laser amplification.				
CO2	Realize three and four-level laser system, the simple homogeneous laser and its output behaviour and optimal operating conditions.				
CO3	Learn operations and basic properties of the most common laser types, He-Ne, carbon-dioxide, ruby, neodymium-YAG, semiconductor diode, dye, excimer and knowledge of other main laser types.				
CO4	Realize laser applications in industry and manufacturing, the use of lasers in medicine, laser applications in science and technology, and the use of lasers in defense and military.				
CO5	Develop an understanding of optical fiber communication link, structure, propagation and transmission properties of an optical fiber.				
CO6	Understand the different kind of losses, signal distortion in optical wave guides and other signal degradation factors. Also learn the different techniques to manufacture optical fibers.				
Physic	s of Nanomaterials B011007T THEORY ELECTIVE 04				
CO1	Understand the fundamental principles of solid-state physics, including crystal structures, band theory, and density of states in bands, and apply this knowledge to explain the behavior of materials at the nanoscale.				
CO2	Analyze the quantum nature of nanomaterials and their optical properties, including surface plasmon resonance in metal nanoparticles and the variation of density of states and band gap with dimensionality, and apply this knowledge to design new materials for renewable energy applications.				
CO3	Evaluate the different methods of nanofabrication, including top-down and bottom-up approaches, lithography, etching, and chemical synthesis, and assess their advantages and limitations for producing different types of nanomaterials.				
CO4	Develop skills in the characterization of nanomaterials using a range of techniques, including X-ray and electron diffraction, microscopy, and spectroscopy, and apply these techniques to identify the structure, particle size, crystallography, and surface structures of different nanomaterials.				
CO5	Demonstrate an understanding of the properties of one-dimensional and two-dimensional electron systems, including quantum confinement, and apply this knowledge to design new materials with novel electronic and optical properties.				
CO6	Critically analyze the role of scattering mechanisms in the diffusive transport of electrons in nanomaterials, and identify strategies for optimizing the transport properties of different materials for specific applications.				
CO7	Evaluate the properties of carbon nanostructures, including fullerenes, carbon nanotubes, and graphene, and assess their potential for use in renewable energy applications, such as solar cells and energy storage devices.				
CO8	Apply the principles of solid-state physics, quantum mechanics, and nanofabrication to design new nanomaterials with specific properties, and evaluate their potential for use in a range of applications, including renewable energy, electronics, and biomedical devices.				
Practi	cal – Electronics-II B011009P PRACTICAL CORE 04				
CO1	Learn implementation of Binary to Gray code converter and vice-versa, BCD to 7-segmant using logic gates.				

96@12 Mahatma Ghandhi Marg, Kanpur -208001

		1					
CO2 Understand how a Multiplexers routes the data from many sources to one de							
	demultiplexer redistributes data back from one source to many destinations.						
СОЗ	Learn to design 4-bit synchronous and asynch	ronous counter	s and evaluate	their operation v	vith their		
COS	respective truth tables.						
	Understand the fundamentals of sampling and	d the translatior	n of signals for	m the digital to ar	alog and		
CO4	analog to digital domains, like 4 Bit R-2R ladde				-		
	Evaluate the performance of analog and digit	al modulation -	- demodulatio	n techniques, suc	h as AM,		
CO5	FM and PAM.						
CO6	Implement analog and digital pulse modulation	on and demodul	ation method	s, like PCM.			
CO7	Learn how 4-bit data can be store and then re	trieve from 4-b	it memory add	dress in RAM.			
	Develop and test assembly language programs to use instructions of 8085, such as addition,						
CO8	subtraction, multiplication and division.						
Resea	rch Project	B011010R	RESEARCH	PROGRESSIVE	08		
	Learn to investigate the problem's design or strategy using available methodology or by developed						
CO1	methodology.						
CO2	Learn data collection and analysis, as well as implementation and validation of results and outcomes.						
CO3	Understand how to reach to the findings and	making logical r	ecommendati	ons.			
	By compilation of dissertation, students will be able to report the research in a scholarly fashion						
CO4	appropriate to the disciplinary area in the form of dissertation or research report.						
	Learn how to analyze and present qualitative				abilities.		
CO5	and showcase improved writing abilities.						